# Renewables + Storage Drop-in Replacement of Fossil Power Plants

ARPA-E Long-duration Energy Storage Workshop December 7<sup>th</sup>, 2018

# Problem Statement

Decarbonizing electricity will require that low-carbon sources meet energy demand throughout the day. Wind and solar photovoltaics are possible technology options, but intermittency and seasonality can be challenges to cost-competitive deployment.

We analyze storage with wind and solar across <u>four locations</u> and <u>four grid roles</u>, determining which technology features are preferable for providing reliable output over twenty years.

We find that storage with costs below \$20/kWh and wind/solar can be cost competitive with conventional generation technologies. Sensitivity to storage power cost \$/kW and round-trip efficiency are substantially weaker than to energy cost \$/kWh.

# Traditional Generation Output Shape

Can you make these generation output shapes with wind and solar?



Baseload Generation

24 Hour Blocks

# Analytic Framework\*



\*J.M. Mueller, G. Pereira, M. Ferrara J. Trancik, Y.-M. Chiang, MIT 2017

# Four Simplified Grid Roles Were Chosen For The Analysis



## Example: Baseload Generation From Wind

First of its Kind Peer Reviewed Study\*

#### Parameters:

- 20-year, high-res US renewable generation data
- Baseload target shape
- Hourly storage dispatch simulations
- Four locations (IA, TX, AZ, MA)

#### **Results:**

 Combination of renewable + storage that minimizes LCOE (levelized cost of electricity) for each plant type

#### **Example: Wind + Storage Baseload Replacement**



\*J.M. Mueller, G. Pereira, M. Ferrara J. Trancik, Y.-M. Chiang, MIT 2017

# Different Combinations of Wind and Storage Can Produce Same Output => Find Optimal One

Low Storage Cost =>

Small wind + Big battery & No curtailment

Large wind + Small battery & Big curtailment

-- Wind Battery Discharge
Battery Discharge
Battery Charge



Same shape!!

# Map of the Cost of Electricity from Iowa Wind + Storage Baseload Plant

#### **Condition Modeled:**

- Iowa wind with ~50% capacity factor at total cost of ownership of \$1,500/kW
- Baseline output

- Wind + Storage plant configurations that minimize LCOE
- LCOE over 20 years of output (Color map)
- Slope of contour lines gives maximum discharge rate in hours



LCOE, All Output Shapes, All Locations, Wind + Storage
Baseload Intermediate Peaker Bipeaker

Bipeaker



# LCOE, All Output Shapes, All Locations, Solar + Storage Baseload Intermediate Peaker Bipeaker



# Relaxing Availability Requirement Reduces LCOE, Increases Competitiveness



- Power cost \$1,000/kW
- Energy cost \$20/kWh
- RTE = 75%
- 20 years of hourly data

Best of class availability factor of conventional firm generation\*

\*Be aware of the difference between planned and unplanned outages and EAF!



# Sensitivity to Storage Round-trip Efficiency is Weak with Small \$/kWh Rich Renewable Resource

#### **Assumptions:**

- Power cost \$1,000/kW
- Energy cost \$20/kWh



# Deep Cycles are Rare. Battery is Mostly Held at High State of Charge



(Duty-cycle calculated at 99% availability factor. At lower values, utilization of storage increases substantially)

# Baseload Power Plant Example



| 12am                 | 12pm  |            | 12am     |
|----------------------|-------|------------|----------|
| Overnight            | 750MW | \$1,230/kW | \$920m   |
| Fuel +<br>O&M*       | 750MW |            | \$2,600m |
| Baseload<br>20-years | 700MW | \$5,030/kW | \$3,520m |

EAF = 90%, Iowa wind (50% capacity factor), RTE = 70%



| 12am                 | 12pm       |                        | 12am     |
|----------------------|------------|------------------------|----------|
| Wind                 | 1,500MW    | \$1,500/kW             | \$2,250m |
| Storage              | 660MW, 50h | \$1,000/kW<br>\$20/kWh | \$1,320m |
| Baseload<br>20-years | 700MW      | \$5,100/kW             | \$3,570m |
| +Merchant            | 660GWh/y   |                        |          |

Confidential

<sup>\*</sup> See appendix for assumptions

# Summary

- Storage with low energy cost <\$20/kWh and long duration 100+ hours is required to produce reliable output cost-competitively with traditional generation.
- Sensitivity to power cost \$/kW and round-trip efficiency are weaker than to energy cost \$/kWh.
- Shelf-life is more important than cycle-life.

# Appendix

### **Contents**

- Grid Roles & Problem Statement
- Assumptions:
  - PV Generation
  - Wind Generation
- Example: Baseload Generation from Wind
- LCOE Results:
  - All Output Shapes, All Locations, Wind + Storage & Solar + Storage
  - Cost Minimizing Resource Mix
- LCOE Sensitivities:
  - Output Availability
  - Storage Round-trip Efficiency
- Storage Cycling Behavior
- Conclusions

# **Example Renewable Starting Point**



## Addressable with Low Cost Storage



## Fact Check: PV TCO

#### \$1,000/kW overnight cost realistic

#### 2016 Cost \$1,500/kW



#### Room for improvement:

- Modules today < \$0.50/W</li>
- Incremental improvements in efficiency
- Innovation in BOS expected (1,500 Vdc, mounting hardware, etc.)

Industry expects \$1,000/kW by 2020

#### \$1,200/kW TCO realistic

TCO target = \$1,200/kW Overnight cost = \$1,000/kW



Lifetime O&M < 20% TCO Best-of-class plants today

<sup>\*</sup>https://www.nrel.gov/docs/fy16osti/67142.pdf

# Fact Check: PV Capacity Factor

- NREL solar insolation map
- 18% module efficiency
- -14% losses, +20% AC/DC ratio
- +20% yield single-axis tracking
- Capacity factors are realistic

| Arizona | lowa  | Mass  | Texas |
|---------|-------|-------|-------|
| 34.1%   | 25.5% | 24.2% | 31.0% |

#### Solar PV Capacity Factor Map



https://serc.carleton.edu/details/files/81036.html

## Fact Check: Wind TCO

#### \$1,200/kW overnight cost realistic



\$1,500/kW TCO realistic

TCO target = \$1,500/kW Overnight cost = \$1,200/kW



Lifetime O&M < 20% TCO Best-of-class plants today

Source: IRENA Renewable Cost Database (2016)

# Fact Check: Wind Capacity Factor

#### 1. Is Iowa's capacity factor of 50% realistic?

- "Rotor scaling over the past few years has clearly begun to drive capacity factors higher. The average 2015 capacity factor among projects built in 2014 reached 41.2%, compared to an average of 31.2% among projects built from 2004–2011 and just 25.8% among projects built from 1998–2003."\*
- Average 2015 rotor diameter ~100m, 160m already in the off-shore market.

#### 2. Is LCOE ~ \$20/MWh realistic?

• "Focusing only on the Interior region, the PPA price decline has been more modest, from ~\$55/MWh among contracts executed in 2009 to ~\$20/MWh today. Today's low PPA prices have been enabled by the combination of higher capacity factors, declining costs, and record-low interest rates documented elsewhere in this report."\*

<sup>\*</sup>https://energy.gov/sites/prod/files/2016/08/f33/2015-Wind-Technologies-Market-Report-08162016.pdf

## **Assumptions: PV**

- PV module:
  - Mono-Si module, ~18% efficiency
- PV plant:
  - DC-AC losses 14%, DC/AC ratio 1.2
  - Single-axis tracking tilted at latitude, 0.4 ground coverage ratio
  - No downtime
- Cost assumptions:
  - Overnight cost < \$1,000/kW</li>
  - 20-year total cost of ownership \$1,200/kW
- Calculated capacity factors:

| Arizona | lowa  | Massachusetts | Texas |
|---------|-------|---------------|-------|
| 34.1%   | 25.5% | 24.2%         | 31.0% |

## Four Locations Cover Diversity of Solar Resource



20-year, hourly resolution irradiance, temperature and wind from WRF model (AWS Truepower)

# Assumptions: Wind

- Wind turbine:
  - Vestas 112 model turbine, 94m hub height
- Wind plant
  - No losses, no downtime
- Cost assumptions:
  - Overnight cost < \$1200/kW</li>
  - 20-year total cost of ownership = \$1,500/kW
- Calculated capacity factors:

| Arizona | lowa  | Massachusetts | Texas |
|---------|-------|---------------|-------|
| 38.6%   | 52.3% | 40.7%         | 61.7% |

# Four Locations Cover Diversity of Wind Resource



20-year, hourly resolution 100m altitude wind and air density from WRF model (AWS Truepower)

## **Storage Cost Convention**

- Technologies w/o intrinsic C-rate constraints (e.g. flow battery, pumped hydro):
  - Energy cost ⇔ Tanks, working fluids, land, EPC (as it scales with battery rated energy), etc.
  - Power cost ⇔ Turbines, electrochemical stack, pumps, pipes, EPC (as it scales with battery rated power), HVAC, power conversion electronics, etc.
- For technologies w/ intrinsic C-rate constraints (e.g. Li-ion):
  - Energy cost ⇔ Racks, enclosure, land, EPC (energy), etc.
  - Power cost ⇔ EPC (power), HVAC, power conversion electronics, etc.

# Overall, System Cost and LCOE Increase Primarily with Storage \$/kWh Cost



# System cost for baseload powerplant 1.6e+04 1.5e+04 1.4e+04 1.3e+04 1.2e+04 1.2e+04 1.0e+04 1.0e+04 1.0e+04 1.10e+04 1.10e+04

0

20

40

60

80

Storage energy cost (\$/kWh)

#### Storage \$/kWh cost is the primary driver of baseload LCOE



6.0e+03

4.9e+03

120

140

100

# Renewable Installed Power and Curtailment Decrease Substantially with Storage \$/kWh Cost



As a consequence, the amount of curtailed renewable energy increases substantially



# The most cost-effective way to meet output requirements at low storage energy cost is a large storage system



# Wind Tends to Be the Preferred Resource Except in Areas with Low Capacity Factor

#### Technology I:

- Power cost \$1,000/kW
- Energy cost \$20/kWh

#### **Technology II:**

- Power cost \$50/kW
- Energy cost \$150/kWh

#### **General:**

- RTE = 75%
- EAF = 99%



# Levelized Cost of Electricity Captures System Economics and Trade-offs for Baseload Output

$$LCOE = \frac{P_{RE} * TCO_{RE} + P_{ESS} * TCO_{ESS\_kW} + E_{ESS} * TCO_{ESS\_kWh}}{Baseload\ Total\ Output\ Energy} \frac{\$}{kWh}$$

Where:

 $P_{RE} \stackrel{\text{def}}{=} Power \ of \ Renewable \ Generator \ (Wind, Solar) \ [kW]$ 

 $E_{ESS} \stackrel{\text{def}}{=} Energy \ of \ Battery \ [kWh]$ 

 $P_{ESS} \stackrel{\text{def}}{=} Power of Battery [kW]$ 

 $TCO \stackrel{\text{def}}{=} Total\ Cost\ of\ Ownership = Capex + Opex\ [\$]$ 

# Map of the Cost of Electricity from a Wind + Storage Baseload Plant

#### **Condition Modeled:**

- Iowa wind with ~50% capacity factor at total cost of ownership of \$1,500/kW
- 24 hour baseload output at 90% annual availability

- Wind + Storage plant configurations that minimize LCOE
- LCOE over 20 years of output (Color map)
- Slope of contour lines gives maximum discharge rate in hours



# Map of the Cost of Electricity from a Wind + ERCOT Load Profile

#### **Condition Modeled:**

- Texas wind with ~60% capacity factor at total cost of ownership of \$1,500/kW
- ERCOT 2016 hourly load output at 90% annual availability
- Storage RTE of 60%

- Wind + Storage plant configurations that minimize LCOE
- LCOE over 20 years of output (Color map)
- Slope of contour lines gives maximum discharge rate in hours



# Map of the Cost of Electricity from a Wind + NEISO Load Profile

#### **Condition Modeled:**

- Mass wind with ~40% capacity factor at total cost of ownership of \$1,500/kW
- NEISO 2016 hourly load output at 90% annual availability
- Storage RTE of 60%

- Wind + Storage plant configurations that minimize LCOE
- LCOE over 20 years of output (Color map)
- Slope of contour lines gives maximum discharge rate in hours



# 2016 US Fossil Fuel Electricity Generation

|                | Generation (GWh) | Capacity<br>(GW) | % of US Capacity | Implied<br>TAM |
|----------------|------------------|------------------|------------------|----------------|
| All US Coal    | 1240             | 289              | 27%              | \$700B         |
| All US Gas     | 1380             | 449              | 42%              | \$1.09T        |
| US Fossil Gen* | 2620             | 738              | 69%              | \$1.79T        |

Total Addressable Market in the US for Baseload Renewables: >\$700B

Confidential

Source: EIA

<sup>\*</sup>Includes intermediate and peaking generation

## Where is Fossil Fuel Generation?



12am 12pm 12am

## **CCGT Specifications**

|                        | Units    | CCGT   |
|------------------------|----------|--------|
| Installed Capital Cost | \$/kW    | 1,230* |
| Variable O&M           | \$/MWh   | 3.67*  |
| Fixed O&M              | \$/kW-y  | 6.31*  |
| Heat Rate              | Btu/kWh  | 6,705* |
| Fuel Cost              | \$/MMBtu | 3.58** |
| Fuel Cost Inflation    | %/y      | 1.6**  |
| O&M Cost Inflation     | %/y      | 2      |
| Discount Rate          | %/y      | 4      |
| Contract term          | У        | 20     |

<sup>\*</sup>https://www.bv.com/docs/reports-studies/nrel-cost-report.pdf

<sup>\*\*</sup>https://www.eia.gov/outlooks/aeo/pdf/0383(2017).pdf; Henry Hub @ \$5/MMBtu in 2040